skip to Main Content
Design Lab’s Edward Wang wins NIH R21 for work on Smartphone-based Alzheimer’s Screening

Design Lab’s Edward Wang wins NIH R21 for work on Smartphone-based Alzheimer’s Screening

Design Lab’s Edward Wang wins NIH R21 for work on Smartphone-based Alzheimer’s Screening

Design Lab’s Edward Wang wins NIH R21 for work on Smartphone-based Alzheimer’s Screening

Design Lab’s Edward Wang, who is a jointly appointed professor in Electrical & Computer Engineering in Jacobs School of Engineering at UC San Diego, wins a National Institutes of Health (NIH) R21 through the National Institute of Aging (NIA) for his work around transforming smartphones into pocket-sized personal health monitors. 

The NIA has selected Design Lab’s Edward Wang, who directs the Digital Health Lab, to receive NIH R21 funding for his work with Co-investigator Eric Granholm, Director of UCSD’s Center for Mental Health Technology (MHTech), to develop a smartphone app that can screen for early signs of cognitive decline indicative of Alzheimer’s Disease (AD). An NIH R21, also known as the Exploratory/Development Grant, provides support in the early and conceptual stages of a project’s development. As part of a national push towards combating the debilitating effects of AD, the National Institute of Aging looked towards funding novel ways to screen for AD through the use of digital technologies.

Edward Wang (left), Eric Granholm (right)

In the proposal, “Smartphone Pupillometer for At-Home Screening for Risk of Alzheimer’s Disease,” Wang, along with MHTech director and professor of Psychiatry Eric Granholm, aims to leverage camera systems found in smartphones to capture pupillary responses to cognitive tests as an indicator of the integrity of a specific part of the brain, the locus coeruleus, that has been shown to be one of the first sites affected by AD-related processes. By taking advantage of the smartphone as the vehicle for conducting such a test, Wang and Granholm believe that this approach of using digital technologies to capture physiological signals has the potential of significantly driving down the cost of deploying these screening solutions widely to combat public health challenges like AD. “By further enhancing the signals that are captured using just your phone with signal processing and machine learning, we are able to derive, what are known as, digital biomarkers,” Wang says. This approach strongly aligns with the NIA’s Notice of Special Interest, which states that “current biomarkers for early detection of prodromal AD […]  are costly and invasive”, and digital biomarkers “can be used to inform disease prediction and management at both the individual and populational level.” 

AD is a progressive degenerative disorder of the brain and is the sixth leading cause of death in the United States, with the latest statistics showing that at least five million Americans over the age of 65 suffer from the disease. Not only is it the most common form of dementia of elderly adults, it is projected that cases of AD will double by 2025. By 2050, it is projected that a total annual cost for health care for people with AD will be more than $1 trillion. ADis clearly a public health crisis. “Our solution is based on previous findings in our research with older adults with mild cognitive impairment, where we studied how differences in pupil dilation in response to memory tests are associated with very early signs of AD,” Granholm says. “It is based on these findings that we are developing this smartphone solution.” If successful, Granholm notes, it would be possible for older adults to perform this test even in the comforts of their own home or by their primary care provider. This is compared with what is available today, which are far more invasive solutions like PET/MRI imaging and lumbar puncture for biomarkers in the spinal fluid.  

As a faculty in the Design Lab, Wang has a particular interest in developing technologies through a lens of human centered design. Wang has had a record of inventing new smartphone-based health monitoring solutions such as hemoglobin/anemia screening, blood pressure monitoring, and ocular disease. In developing these solutions, Wang has worked with a wide range of collaborators across the world to develop and test these systems with end users to make sure that the purported solutions truly can work with the target users and in realistic conditions. “Sometimes what we find is that an idea works well in lab settings where we can control the lighting and temperature of the room, but completely fails in realistic conditions that screening tools like these have to operate under.”


Wang working in a village in the Amazon Jungle of Peru testing his smartphone hemoglobin monitor

In a previous workaround anemia screening, Wang worked with NGOs in Peru to bring his prototype app into villages nestled in the Amazonian Jungle, where NGO staff regularly travel to in order to perform anemia screening and treatments. “It turns out, we never considered that the main use case for our technology is really to screen for anemia in kids under 3 years old. Although the physics still holds, behaviorally, kids at that age are so different that we basically couldn’t get the kids to stay still long enough to be able to measure them with our app,” Wang reflects. “One of the common misconceptions in engineering research is that we can always build it to work better with enough resources once a technology leaves the lab,” Wang says, “The issue with that kind of approach  is that sometimes that can lead us into solutions that don’t have a chance of working. That is why human centered design being a central loop in the research is so important.”

Wang notes that keeping the elder user base in mind is crucial in the success of this research endeavor. “One of the things I think is particularly interesting in working on digital technology for the older population is that it requires a lot more nuances around usability,” Wang explains. “Our big hope is that [our app] works with little to no training with either home care providers or with the older adults themselves.” Wang cautions, however, that these solutions are far from ready and requires extensive research on how well such digital biomarkers can differentiate diseases and how they will ultimately serve in the entire ecosystem of healthcare. “Our research aims to solve big healthcare problems by looking for creative ways to invent new ways our society can screen and treat diseases. But this shift that brings healthcare closer to everyday life, literally into our pockets, means that we will have to be very intentional in our designs of how people will use these technologies to be not only useful, but safe as well.”

Read more about Wang’s research on digital health technologies at UCSD. 

Congratulations, Edward!

Design Lab’s Edward Wang, who is a jointly appointed professor in Electrical & Computer Engineering in Jacobs School of Engineering at UC San Diego, wins a National Institutes of Health (NIH) R21 through the National Institute of Aging (NIA) for his work around transforming smartphones into pocket-sized personal health monitors. 

The NIA has selected Design Lab’s Edward Wang, who directs the Digital Health Lab, to receive NIH R21 funding for his work with Co-investigator Eric Granholm, Director of UCSD’s Center for Mental Health Technology (MHTech), to develop a smartphone app that can screen for early signs of cognitive decline indicative of Alzheimer’s Disease (AD). An NIH R21, also known as the Exploratory/Development Grant, provides support in the early and conceptual stages of a project’s development. As part of a national push towards combating the debilitating effects of AD, the National Institute of Aging looked towards funding novel ways to screen for AD through the use of digital technologies.

Edward Wang (left), Eric Granholm (right)

In the proposal, “Smartphone Pupillometer for At-Home Screening for Risk of Alzheimer’s Disease,” Wang, along with MHTech director and professor of Psychiatry Eric Granholm, aims to leverage camera systems found in smartphones to capture pupillary responses to cognitive tests as an indicator of the integrity of a specific part of the brain, the locus coeruleus, that has been shown to be one of the first sites affected by AD-related processes. By taking advantage of the smartphone as the vehicle for conducting such a test, Wang and Granholm believe that this approach of using digital technologies to capture physiological signals has the potential of significantly driving down the cost of deploying these screening solutions widely to combat public health challenges like AD. “By further enhancing the signals that are captured using just your phone with signal processing and machine learning, we are able to derive, what are known as, digital biomarkers,” Wang says. This approach strongly aligns with the NIA’s Notice of Special Interest, which states that “current biomarkers for early detection of prodromal AD […]  are costly and invasive”, and digital biomarkers “can be used to inform disease prediction and management at both the individual and populational level.” 

AD is a progressive degenerative disorder of the brain and is the sixth leading cause of death in the United States, with the latest statistics showing that at least five million Americans over the age of 65 suffer from the disease. Not only is it the most common form of dementia of elderly adults, it is projected that cases of AD will double by 2025. By 2050, it is projected that a total annual cost for health care for people with AD will be more than $1 trillion. ADis clearly a public health crisis. “Our solution is based on previous findings in our research with older adults with mild cognitive impairment, where we studied how differences in pupil dilation in response to memory tests are associated with very early signs of AD,” Granholm says. “It is based on these findings that we are developing this smartphone solution.” If successful, Granholm notes, it would be possible for older adults to perform this test even in the comforts of their own home or by their primary care provider. This is compared with what is available today, which are far more invasive solutions like PET/MRI imaging and lumbar puncture for biomarkers in the spinal fluid.  

As a faculty in the Design Lab, Wang has a particular interest in developing technologies through a lens of human centered design. Wang has had a record of inventing new smartphone-based health monitoring solutions such as hemoglobin/anemia screening, blood pressure monitoring, and ocular disease. In developing these solutions, Wang has worked with a wide range of collaborators across the world to develop and test these systems with end users to make sure that the purported solutions truly can work with the target users and in realistic conditions. “Sometimes what we find is that an idea works well in lab settings where we can control the lighting and temperature of the room, but completely fails in realistic conditions that screening tools like these have to operate under.”


Wang working in a village in the Amazon Jungle of Peru testing his smartphone hemoglobin monitor

In a previous workaround anemia screening, Wang worked with NGOs in Peru to bring his prototype app into villages nestled in the Amazonian Jungle, where NGO staff regularly travel to in order to perform anemia screening and treatments. “It turns out, we never considered that the main use case for our technology is really to screen for anemia in kids under 3 years old. Although the physics still holds, behaviorally, kids at that age are so different that we basically couldn’t get the kids to stay still long enough to be able to measure them with our app,” Wang reflects. “One of the common misconceptions in engineering research is that we can always build it to work better with enough resources once a technology leaves the lab,” Wang says, “The issue with that kind of approach  is that sometimes that can lead us into solutions that don’t have a chance of working. That is why human centered design being a central loop in the research is so important.”

Wang notes that keeping the elder user base in mind is crucial in the success of this research endeavor. “One of the things I think is particularly interesting in working on digital technology for the older population is that it requires a lot more nuances around usability,” Wang explains. “Our big hope is that [our app] works with little to no training with either home care providers or with the older adults themselves.” Wang cautions, however, that these solutions are far from ready and requires extensive research on how well such digital biomarkers can differentiate diseases and how they will ultimately serve in the entire ecosystem of healthcare. “Our research aims to solve big healthcare problems by looking for creative ways to invent new ways our society can screen and treat diseases. But this shift that brings healthcare closer to everyday life, literally into our pockets, means that we will have to be very intentional in our designs of how people will use these technologies to be not only useful, but safe as well.”

Read more about Wang’s research on digital health technologies at UCSD. 

Congratulations, Edward!

Design Lab’s Edward Wang, who is a jointly appointed professor in Electrical & Computer Engineering in Jacobs School of Engineering at UC San Diego, wins a National Institutes of Health (NIH) R21 through the National Institute of Aging (NIA) for his work around transforming smartphones into pocket-sized personal health monitors. 

The NIA has selected Design Lab’s Edward Wang, who directs the Digital Health Lab, to receive NIH R21 funding for his work with Co-investigator Eric Granholm, Director of UCSD’s Center for Mental Health Technology (MHTech), to develop a smartphone app that can screen for early signs of cognitive decline indicative of Alzheimer’s Disease (AD). An NIH R21, also known as the Exploratory/Development Grant, provides support in the early and conceptual stages of a project’s development. As part of a national push towards combating the debilitating effects of AD, the National Institute of Aging looked towards funding novel ways to screen for AD through the use of digital technologies.

Edward Wang (left), Eric Granholm (right)

In the proposal, “Smartphone Pupillometer for At-Home Screening for Risk of Alzheimer’s Disease,” Wang, along with MHTech director and professor of Psychiatry Eric Granholm, aims to leverage camera systems found in smartphones to capture pupillary responses to cognitive tests as an indicator of the integrity of a specific part of the brain, the locus coeruleus, that has been shown to be one of the first sites affected by AD-related processes. By taking advantage of the smartphone as the vehicle for conducting such a test, Wang and Granholm believe that this approach of using digital technologies to capture physiological signals has the potential of significantly driving down the cost of deploying these screening solutions widely to combat public health challenges like AD. “By further enhancing the signals that are captured using just your phone with signal processing and machine learning, we are able to derive, what are known as, digital biomarkers,” Wang says. This approach strongly aligns with the NIA’s Notice of Special Interest, which states that “current biomarkers for early detection of prodromal AD […]  are costly and invasive”, and digital biomarkers “can be used to inform disease prediction and management at both the individual and populational level.” 

AD is a progressive degenerative disorder of the brain and is the sixth leading cause of death in the United States, with the latest statistics showing that at least five million Americans over the age of 65 suffer from the disease. Not only is it the most common form of dementia of elderly adults, it is projected that cases of AD will double by 2025. By 2050, it is projected that a total annual cost for health care for people with AD will be more than $1 trillion. ADis clearly a public health crisis. “Our solution is based on previous findings in our research with older adults with mild cognitive impairment, where we studied how differences in pupil dilation in response to memory tests are associated with very early signs of AD,” Granholm says. “It is based on these findings that we are developing this smartphone solution.” If successful, Granholm notes, it would be possible for older adults to perform this test even in the comforts of their own home or by their primary care provider. This is compared with what is available today, which are far more invasive solutions like PET/MRI imaging and lumbar puncture for biomarkers in the spinal fluid.  

As a faculty in the Design Lab, Wang has a particular interest in developing technologies through a lens of human centered design. Wang has had a record of inventing new smartphone-based health monitoring solutions such as hemoglobin/anemia screening, blood pressure monitoring, and ocular disease. In developing these solutions, Wang has worked with a wide range of collaborators across the world to develop and test these systems with end users to make sure that the purported solutions truly can work with the target users and in realistic conditions. “Sometimes what we find is that an idea works well in lab settings where we can control the lighting and temperature of the room, but completely fails in realistic conditions that screening tools like these have to operate under.”


Wang working in a village in the Amazon Jungle of Peru testing his smartphone hemoglobin monitor

In a previous workaround anemia screening, Wang worked with NGOs in Peru to bring his prototype app into villages nestled in the Amazonian Jungle, where NGO staff regularly travel to in order to perform anemia screening and treatments. “It turns out, we never considered that the main use case for our technology is really to screen for anemia in kids under 3 years old. Although the physics still holds, behaviorally, kids at that age are so different that we basically couldn’t get the kids to stay still long enough to be able to measure them with our app,” Wang reflects. “One of the common misconceptions in engineering research is that we can always build it to work better with enough resources once a technology leaves the lab,” Wang says, “The issue with that kind of approach  is that sometimes that can lead us into solutions that don’t have a chance of working. That is why human centered design being a central loop in the research is so important.”

Wang notes that keeping the elder user base in mind is crucial in the success of this research endeavor. “One of the things I think is particularly interesting in working on digital technology for the older population is that it requires a lot more nuances around usability,” Wang explains. “Our big hope is that [our app] works with little to no training with either home care providers or with the older adults themselves.” Wang cautions, however, that these solutions are far from ready and requires extensive research on how well such digital biomarkers can differentiate diseases and how they will ultimately serve in the entire ecosystem of healthcare. “Our research aims to solve big healthcare problems by looking for creative ways to invent new ways our society can screen and treat diseases. But this shift that brings healthcare closer to everyday life, literally into our pockets, means that we will have to be very intentional in our designs of how people will use these technologies to be not only useful, but safe as well.”

Read more about Wang’s research on digital health technologies at UCSD. 

Congratulations, Edward!

Read Next

San Diego Regional EDC teams up with Design Lab on Link2 Project

Kate Gallagher with the San Diego Economic Development Corporation (EDC) needed a website redesign for…

Olga McConnell

Olga McConnell, Project Specialist and Executive Assistant to the Director of The Design Lab

As the Executive Assistant to the Director of The Design Lab, a project manager for the Lab’s special projects and annual events, and a lifelong learner who holds a M.A. in English Linguistics and Translation, and a M.B.A. in Business Administration and Management, Olga McConnell’s zest for knowledge is palpable. She is currently on track to complete a Project Management Certification at UC San Diego Extension at the end of 2021, and she is planning on obtaining her Project Management Professional (PMP) Certification after that. “I’m kind of addicted to getting degrees,” jokes McConnell. “I even thought the other day, maybe I’ll go to law school. And then I was like, no, enough, enough.” 

For nearly five years, McConnell was Executive Assistant to Don Norman, the Founding Director Emeritus of The Design Lab. She is now the Executive Assistant to the new Director of The Design Lab, Mai Thi Nguyen. It is Nguyen’s vision of human-technology-community interactions, along with her JEDI (justice, diversity, equity and inclusion) approach that has McConnell excited about this new chapter in the Lab’s legacy, saying, “I see how great she is as an efficient leader, so I’m really looking forward to working with her, supporting her administratively, as well as taking charge of certain projects that she has in mind.”

The UC San Diego Design Lab

This is an exciting time for the field of design. The technologies that the research communities have worked on for the past 25 years have leapt off the pages of academic journals and into the daily lives of billions. What used to be our imagination is now our reality. These have enabled an extremely wide range of innovation in multiple arenas: healthcare and medicine, business, social interaction, entertainment.

But technology only enables: a practical application requires more than the underlying technology. If we build things for people, then knowledge of both people and technology is required. If we are to make them pleasurable, then the creativity and craft skills of artists and traditionally trained industrial and graphic designers are required. If they are to be understandable, then social scientists are required, including experts in writing and exposition. If they are to thrive in the world of business, then schools of management are required. Design aspires to combine these very different vertical threads of knowledge. Design is an all encompassing field that integrates together business and engineering, the social sciences and the arts.

Opinion: Becoming a World Design Capital would improve life in San Diego-Tijuana

San Diego Union Tribune Op-Ed by Mayor Todd Gloria

I believe that San Diego is one of the world’s greatest cities, and together with our sister city Tijuana, we form a dynamic, multicultural area unlike anywhere else. Both as a lifelong San Diegan and the mayor of San Diego, I am proud that our city is one of two finalists in the running to be selected as the World Design Capital in 2024. Earning this designation would highlight the unique character of our binational region and show the entire world that our diversity is our strength.

Just as design has continued to address complex challenges at our border and between our cities, we continue to improve the quality of life in San Diego through thoughtful, human-centered design. The transformation of the Plaza de Panama at Balboa Park, Waterfront Park and Liberty Station are only a few examples of how we’ve begun to think about public space differently in San Diego over the last decade.

The UC San Diego Design Lab

This is an exciting time for the field of design. The technologies that the research communities have worked on for the past 25 years have leapt off the pages of academic journals and into the daily lives of billions. What used to be our imagination is now our reality. These have enabled an extremely wide range of innovation in multiple arenas: healthcare and medicine, business, social interaction, entertainment.

But technology only enables: a practical application requires more than the underlying technology. If we build things for people, then knowledge of both people and technology is required. If we are to make them pleasurable, then the creativity and craft skills of artists and traditionally trained industrial and graphic designers are required. If they are to be understandable, then social scientists are required, including experts in writing and exposition. If they are to thrive in the world of business, then schools of management are required. Design aspires to combine these very different vertical threads of knowledge. Design is an all encompassing field that integrates together business and engineering, the social sciences and the arts.
Ucsd Logo Design Lab

Message from Don Norman on Power and Prejudice

A message from Don Norman, Director of the Design Lab, regarding the protests, violence following George Floyd’s death
Back To Top